Lecture 12

Disjoint-Set Data Structure (contd.)

Source: Introduction to Algorithms, CLRS
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Rank starts with O

Idea: /

® For every node keep track of its rank which denotes its height in the tree.
® During Union:
® Root with smaller rank will point to root with larger rank.

® |f roots have the same rank then anyone can point to the other one and rank of the new

representative will increase by one.
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Path-Compression Heuristic

In Path-Compression, while performing Find-Set(x) we make root the parent of every node

on path from x to root.
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