Lecture 12

Disjoint-Set Data Structure (contd.)

Source: Introduction to Algorithms, CLRS

Union on Disjoint-Sets as Trees using Rank

Union on Disjoint-Sets as Trees using Rank

Idea:

Union on Disjoint-Sets as Trees using Rank

Idea:

® For every node keep track of its rank which denotes its height in the tree.

Union on Disjoint-Sets as Trees using Rank

Idea:
® For every node keep track of its rank which denotes its height in the tree.

® During Union:

Union on Disjoint-Sets as Trees using Rank

Idea:
® For every node keep track of its rank which denotes its height in the tree.
® During Union:

® Root with smaller rank will point to root with larger rank.

Union on Disjoint-Sets as Trees using Rank

Idea:
® For every node keep track of its rank which denotes its height in the tree.
® During Union:

® Root with smaller rank will point to root with larger rank.

® |f roots have the same rank then anyone can point to the other one and rank of the new

Union on Disjoint-Sets as Trees using Rank

Idea:
® For every node keep track of its rank which denotes its height in the tree.
® During Union:

® Root with smaller rank will point to root with larger rank.

® |f roots have the same rank then anyone can point to the other one and rank of the new

representative will increase by one.

Union on Disjoint-Sets as Trees using Rank

Rank starts with O

Idea: /

® For every node keep track of its rank which denotes its height in the tree.
® During Union:
® Root with smaller rank will point to root with larger rank.

® |f roots have the same rank then anyone can point to the other one and rank of the new

representative will increase by one.

Union on Disjoint-Sets as Trees using Rank

99 P9 .

Union on Disjoint-Sets as Trees using Rank

Union on Disjoint-Sets as Trees using Rank

Union(2,3)

Union on Disjoint-Sets as Trees using Rank

Sets: (0)@ (1)@ (0)@ (O) (0)

(0)

Union on Disjoint-Sets as Trees using Rank

Sets: (0)@ (1)@ (0)@ (O) (0)

(0)

Union on Disjoint-Sets as Trees using Rank

Sets: (0)@ (1)@ (0)@ (O) (0)

(0)

Union(3.4)

Union on Disjoint-Sets as Trees using Rank

Sets: (0)@ (1)@ (0)@ (O) (0)

(0) Union(98,99)

AN

Union(3.4)

Union on Disjoint-Sets as Trees using Rank

Sets: (O)@ (1)@ (1)
“”GD/ “’}‘D <0>

Union on Disjoint-Sets as Trees using Rank

Sets: (O)@ (1)@ (1)
“”GD/ “’}‘D <0>

Union(4,98)

Union on Disjoint-Sets as Trees using Rank

Sets: (O)@ (2)@
o o
(0) (1) (0)

Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Find-Set(x):

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Find-Set(x):
1. ifx#x.p

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Find-Set(x):
1. ifx#x.p
2. return Find-Set(x . p)

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Find-Set(x):

1. ifx#x.p

2. return Find-Set(x . p)
3. else

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x):
1. x.p=xXx

2. x.rank =0

Find-Set(x):

1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=xXx

2. x.rank =0

Find-Set(x):

1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):

1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0

Find-Set(x):

1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=xXx 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank

Find-Set(x):

1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank

3. V.p =X

Find-Set(x):

1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=xXx 1. x = Find-Set(x), y = Find-Set(y)

2. x.rank =0 if x . rank > y . rank

2

3. V.p =X
Find-Set(x): 4. elseif x.rank <y.rank
1. ifx#x.p
2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank
3. V.p =X
Find-Set(x): 4. elseif x.rank <Yy .rank
1. ifx#x.p >0. X.p=Y

2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank
3. V.p =X
Find-Set(x): 4. elseif x.rank <Yy .rank
1. ifx#x.p >0. X.p=Y
6. else

2 return Find-Set(x . p)
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

L. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank
3. V.p =X
Find-Set(x): 4. elseif x.rank < y.rank
1. ifx#x.p J. X.p=Yy
return Find-Set(x . p) 6. else
7. X.p=Y

2
3. else
4

return x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Make-Set(x): Union(x, y):
1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank
3. V.p =X
Find-Set(x): 4. elseif x.rank < y.rank
1. ifx#x.p J. X.p=Yy
2 return Find-Set(x . p) 6. else
3. else 7. X.p=y
4 return x 8. y.rank =y .rank + 1

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: Make-Set(x), Union(x, y), and Find-Set(x).

Assume x and y are in different sets

Make-Set(x): Union(x, y):/
1. x.p=x 1. x = Find-Set(x), y = Find-Set(y)
2. x.rank =0 2. ifx.rank > y.rank
3. V.p =X
Find-Set(x): 4. elseif x.rank < y.rank
1. ifx#x.p J. X.p=Yy
2 return Find-Set(x . p) 6. else
3. else 7. X.p=y
4 return x 8. y.rank =y .rank + 1

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

operations, takes O(m 1g n) time in the tree using rank implementation.

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

operations, takes O(m 1gn) time in the tree using rank implementation.

Proving rank of any tree (set) can be at most O(lg n) is sufficient for proving above claim.

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step:

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step:

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank 1 + 1.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

it must have been a union of two trees say 7, and 7', with their roots' rank i.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.

Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for
nodes with rank i + 1. Let x be a node with rank 7 + 1.
Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

it must have been a union of two trees say 7, and 7', with their roots' rank i.

From inductive hypothesis each of 7, and 7, contain at least 2’ nodes.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

it must have been a union of two trees say 7, and 7', with their roots' rank i.

From inductive hypothesis each of 7, and 7, contain at least 2’ nodes.

Hence, T'= T, U T, will contain at least 2" + 2 = 2/*! nodes.

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

it must have been a union of two trees say 7, and 7', with their roots' rank i.

From inductive hypothesis each of 7, and 7, contain at least 2’ nodes.

Hence, T'= T, U T, will contain at least 2" + 2 = 2/*! nodes.

Case 2: At rank i + | of x, every union operation can add k > 0 nodes in tree(x).

Disjoint-Sets as Trees: Analysis

Claim: A node with rank (or height) /1 has at least 2" nodes in the subtree rooted at that node.
Proof: We will prove it using induction on /.

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank < i, we will prove it for

nodes with rank i + 1. Let x be a node with rank i + 1.

Case 1: The first time when x's rank changed from i to 7 + | and it became root of tree, say 7,

it must have been a union of two trees say 7, and 7', with their roots' rank i.

From inductive hypothesis each of 7, and 7, contain at least 2’ nodes.

Hence, T'= T, U T, will contain at least 2" + 2 = 2/*! nodes.

Case 2: At rank i + | of x, every union operation can add k > 0 nodes in tree(x).

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

|lgn|+k

Then, from the previous claim its subtree should contain at least 2 nodes.

But, plgnl+k - n, which is not possible.

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

|lgn|+k

Then, from the previous claim its subtree should contain at least 2 nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

|lgn|+k

Then, from the previous claim its subtree should contain at least 2 nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.

|lgn|+k

Then, from the previous claim its subtree should contain at least 2 nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where i < |lgn| is the rank of the root of the tree.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where i < |lgn| is the rank of the root of the tree.

Hence, m operations take O(m lgn) time.

Disjoint-Sets as Trees: Analysis

Claim: Every node has rank at most |1gn| in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank |lgn| + k, where k > 0.
Then, from the previous claim its subtree should contain at least 2!'8"1** nodes.

But, plgnl+k - n, which is not possible. m

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first 7 of which are Make-Set

operations, takes O(m g n) time in the tree using rank implementation.
Proof: Make-Set operations take constant time.
Union operations take the same time as Find-Set.

Find-Set operations take O(h) time, where i < |lgn| is the rank of the root of the tree.

Hence, m operations take O(m lgn) time.
H

Path-Compression Heuristic

Path-Compression Heuristic

Path-Compression Heuristic

"N Find-Set(4)

Path-Compression Heuristic

Path-Compression Heuristic

Path-Compression Heuristic

Path-Compression Heuristic

4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S

—_

Path-Compression Heuristic

4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S

—_ —_

Path-Compression Heuristic

4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S

—_ —_

Path-Compression Heuristic

In Path-Compression, while performing Find-Set(x) we make root the parent of every node

on path from x to root.

4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
4 S 4 S
S 4

—_ —_

Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):
1. ifx#x.p

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):
1. ifx#x.p
2. return Find-Set(x . p)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. ifx#x.p

2. return Find-Set(x . p)
3. else

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. ifx#x.p
2. return Find-Set(x . p)
3. else
4.

return x

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. ifx#x.p

2 return Find-Set(x . p)
3. else

4 return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x):

1. ifx#x.p

2. return Find-Set(x . p)
3. else

4. return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx#x.p

2. return Find-Set(x . p)
3. else

4. return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. if :
7D 1. ifx#x.p
2 return Find-Set(x . p) —
3. else
4 return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. if .
) if x#x.p iy 1. ifx#x.p
t Find-Set(x . —
return Find-Set(x . p) 2. x .p = Find-Set(x . p)
3. else
4 return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. if :
) if x#x.p iy 1. ifx#x.p
t Find-Set(x. _ >
return Find-Set(x . p) 2. x .p = Find-Set(x . p)
3. else
3. returnx.p
4 return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. if :
) if x#x.p iy 1. ifx#x.p
t Find-Set(x. _ >
return Find-Set(x . p) 2. x .p = Find-Set(x . p)
3. else
3. returnx.p
4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Note: When using path-compression heuristic, rank gives an upper bound on the height of a

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Note: When using path-compression heuristic, rank gives an upper bound on the height of a

node.

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. if :
) if x#x.p iy 1. ifx#x.p
t Find-Set(x. _ >
return Find-Set(x . p) 2. x .p = Find-Set(x . p)
3. else
3. returnx.p
4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.

7D 1. 1. ifx#x.p
2 return Find-Set(x. ——

(x-p) 2. x . p = Find-Set(x . p)
3. else
3. returnx.p
4 return x
Old Find-Set(x) Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

operations, takes O(ma(n)) time using rank and path-compression heuristic.

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

operations, takes O(ma(n)) time using rank and path-compression heuristic.

\— Inverse of Ackerman function, a(n), is a very very slowly growing function.

Disjoint-Sets as Trees: Operations

Change Find-Set(x) to implement path-compression.

Find-Set(x): Find-Set(x):

1. ifx+x.
7P 1. ifx#x.p

2 return Find-Set(x . p) — .
2. x .p = Find-Set(x . p)

3. else
3. returnx.p

4 return x

Old Find-Set(x) Find-Set(x) with path-compression

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

operations, takes O(ma(n)) time using rank and path-compression heuristic.

\— a(n) < 4 forn < 10,

