

Lecture 12

Disjoint-Set Data Structure (contd.)

Source: Introduction to Algorithms, CLRS

Union on Disjoint-Sets as Trees using Rank

Union on Disjoint-Sets as Trees using Rank

Idea:

Union on Disjoint-Sets as Trees using Rank

Idea:

- For every node keep track of its **rank** which denotes its **height** in the tree.

Union on Disjoint-Sets as Trees using Rank

Idea:

- For every node keep track of its **rank** which denotes its **height** in the tree.
- During **Union**:

Union on Disjoint-Sets as Trees using Rank

Idea:

- For every node keep track of its **rank** which denotes its **height** in the tree.
- During **Union**:
 - Root with **smaller rank** will point to root with **larger rank**.

Union on Disjoint-Sets as Trees using Rank

Idea:

- For every node keep track of its **rank** which denotes its **height** in the tree.
- During **Union**:
 - Root with **smaller rank** will point to root with **larger rank**.
 - If roots have the **same rank** then anyone can point to the other one and **rank** of the new

Union on Disjoint-Sets as Trees using Rank

Idea:

- For every node keep track of its **rank** which denotes its **height** in the tree.
- During **Union**:
 - Root with **smaller rank** will point to root with **larger rank**.
 - If roots have the **same rank** then anyone can point to the other one and **rank** of the new **representative** will **increase by one**.

Union on Disjoint-Sets as Trees using Rank

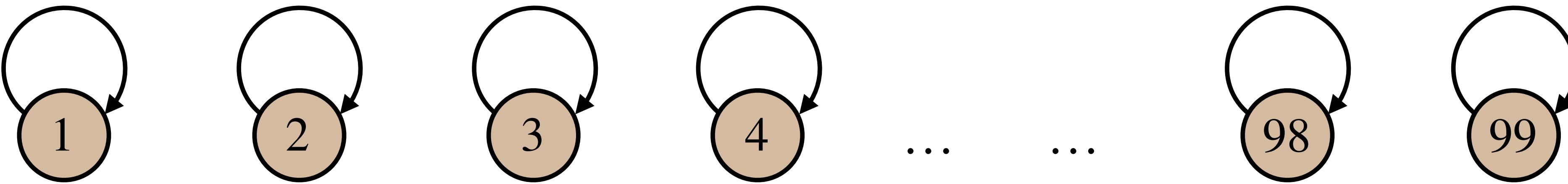
Idea:

Rank starts with 0

- For every node keep track of its **rank** which denotes its **height** in the tree.
- During **Union**:
 - Root with **smaller rank** will point to root with **larger rank**.
 - If roots have the **same rank** then anyone can point to the other one and **rank** of the new **representative** will **increase by one**.

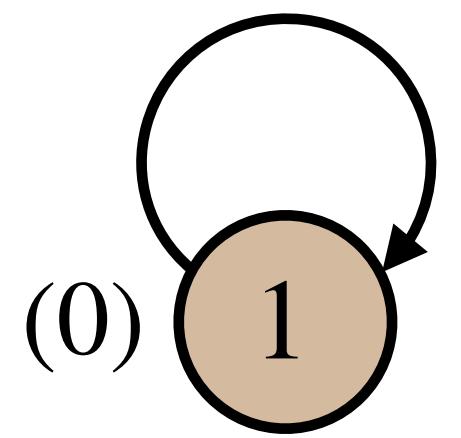
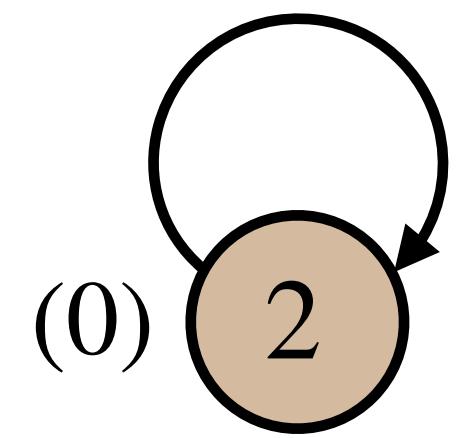
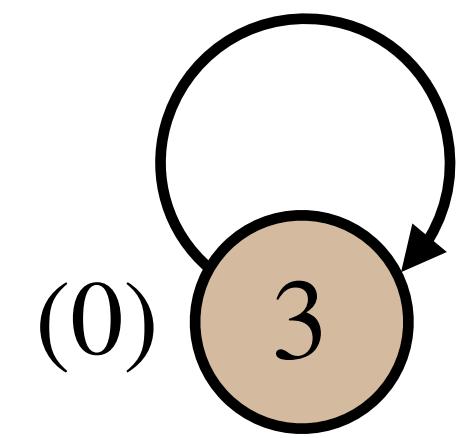
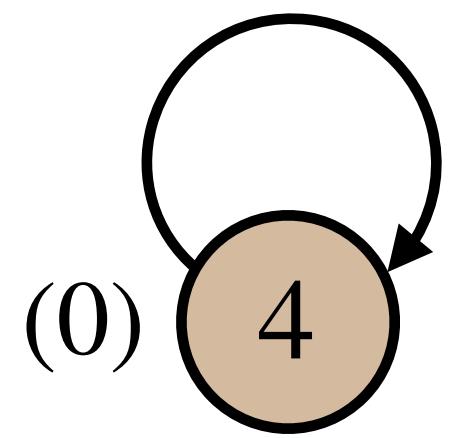
Union on Disjoint-Sets as Trees using Rank

Sets:



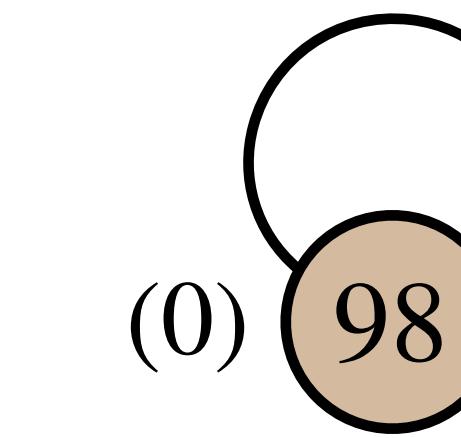
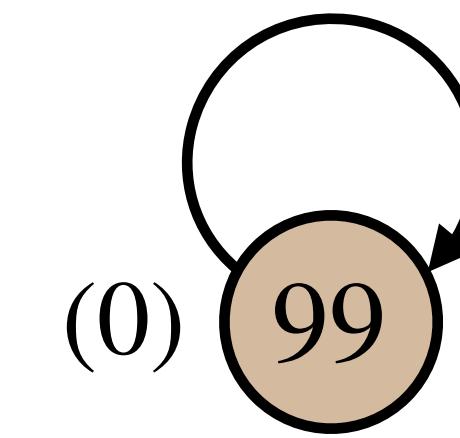
Union on Disjoint-Sets as Trees using Rank

Sets:

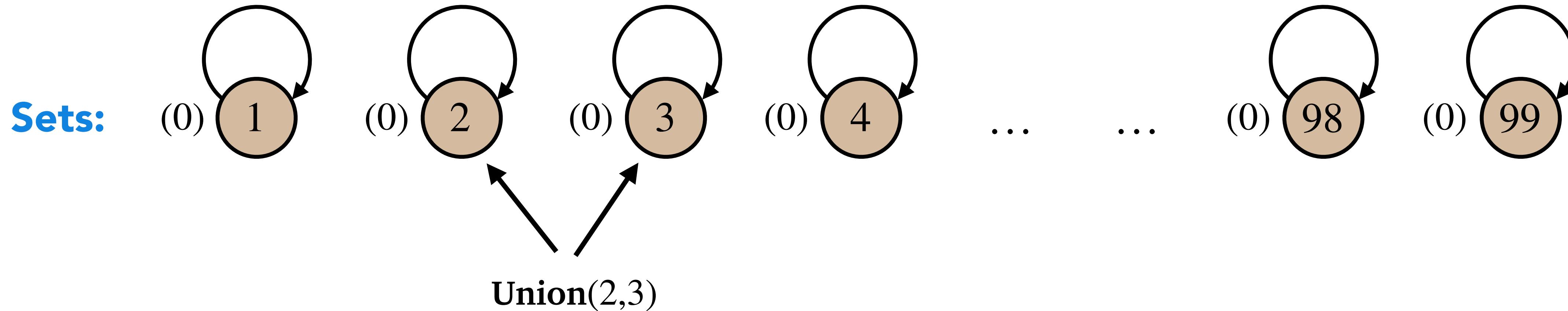


...

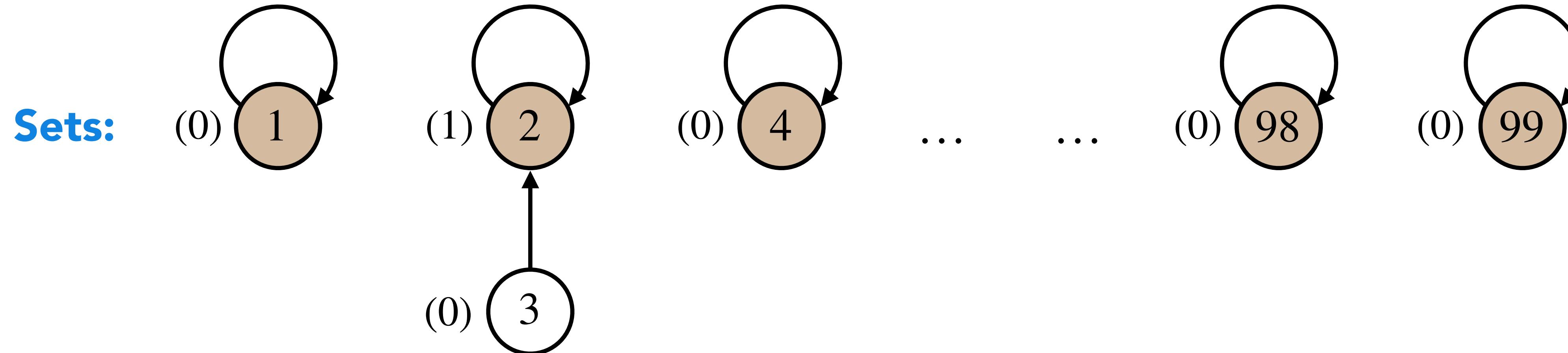
...



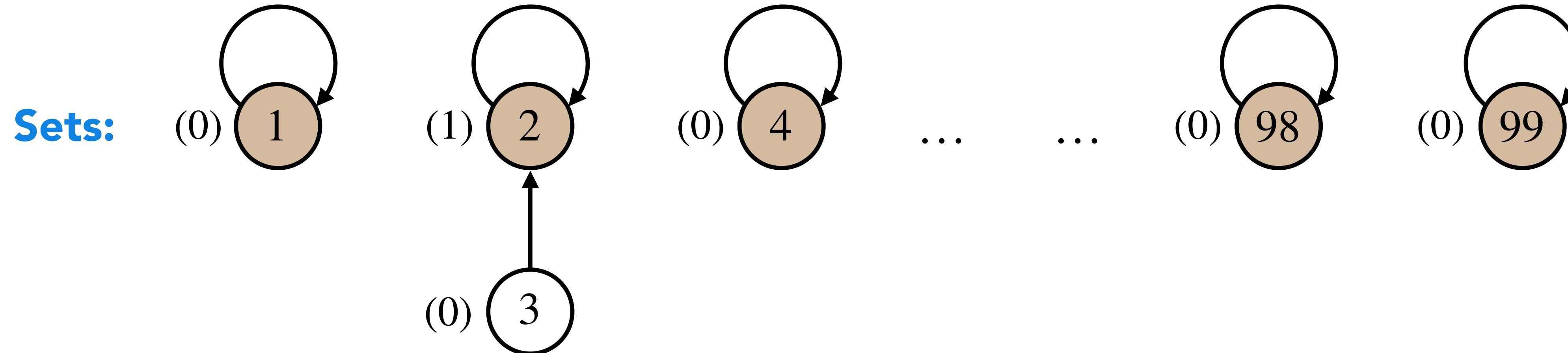
Union on Disjoint-Sets as Trees using Rank



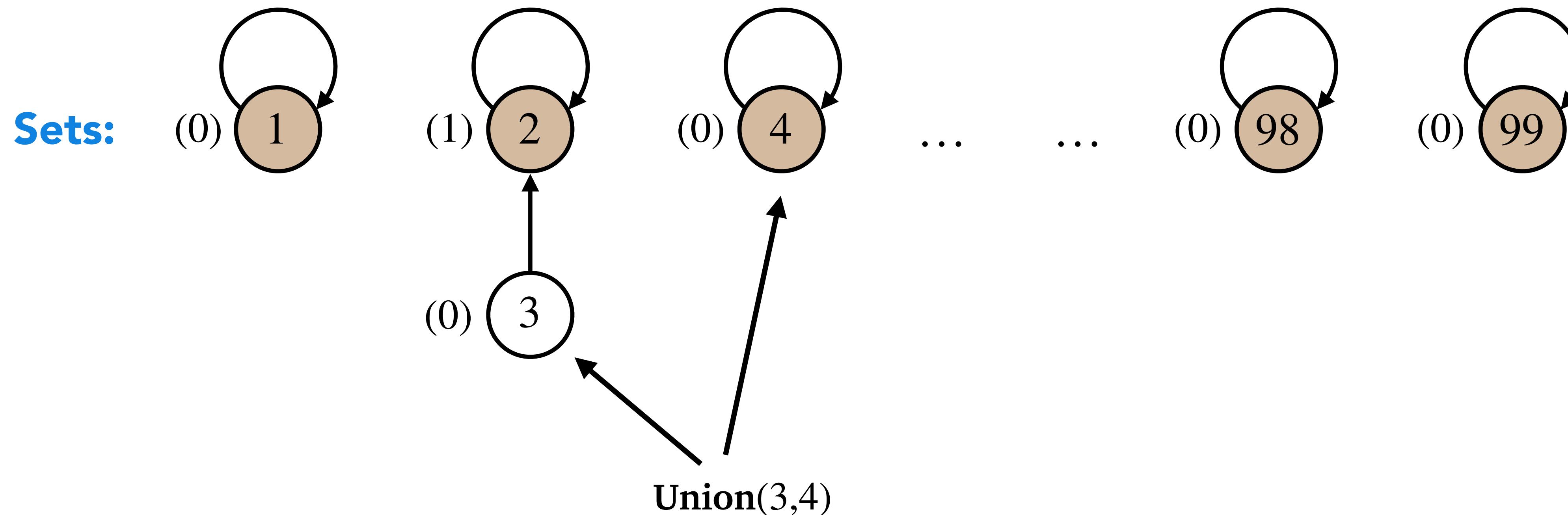
Union on Disjoint-Sets as Trees using Rank



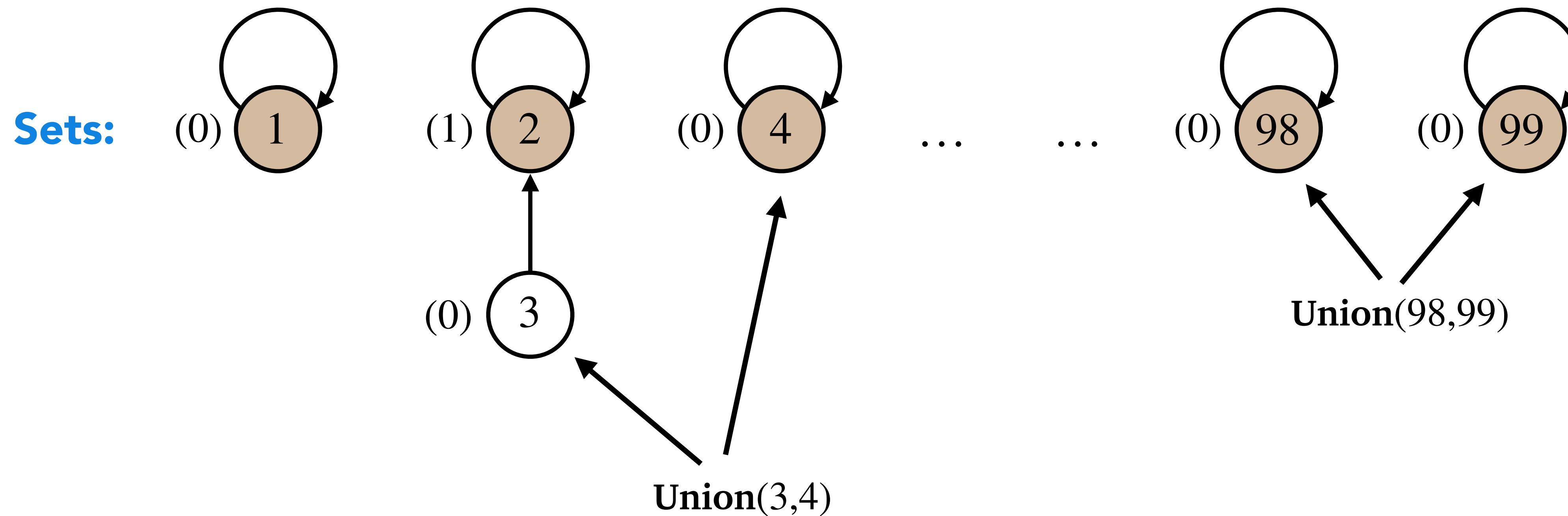
Union on Disjoint-Sets as Trees using Rank



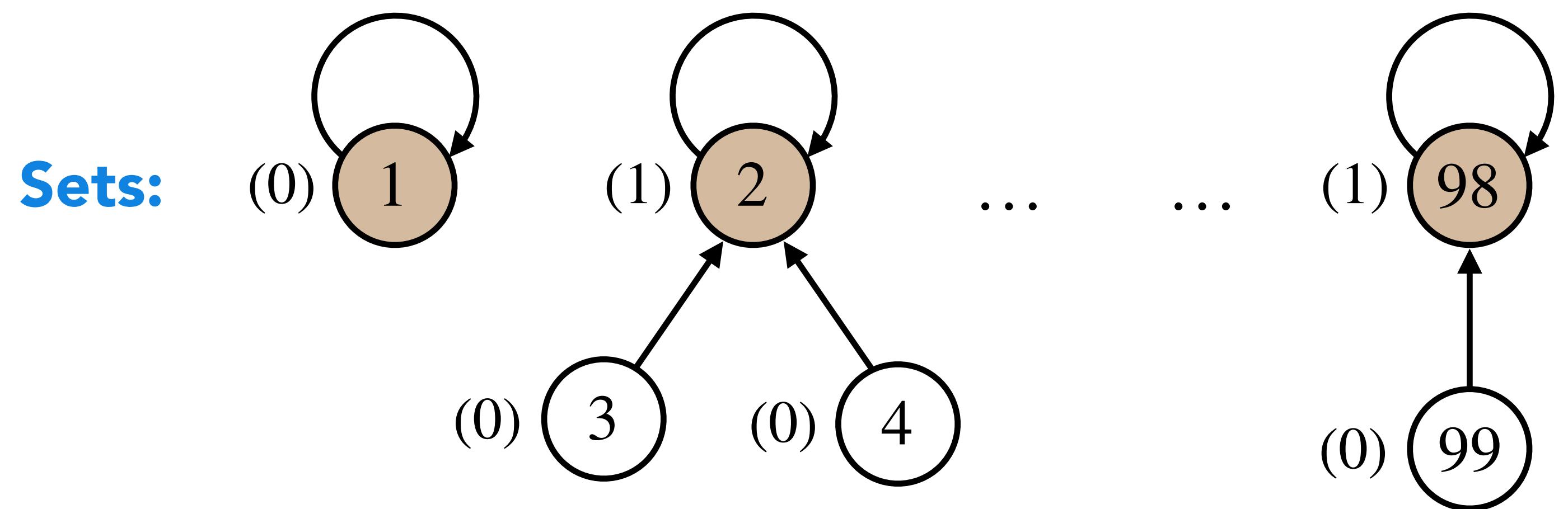
Union on Disjoint-Sets as Trees using Rank



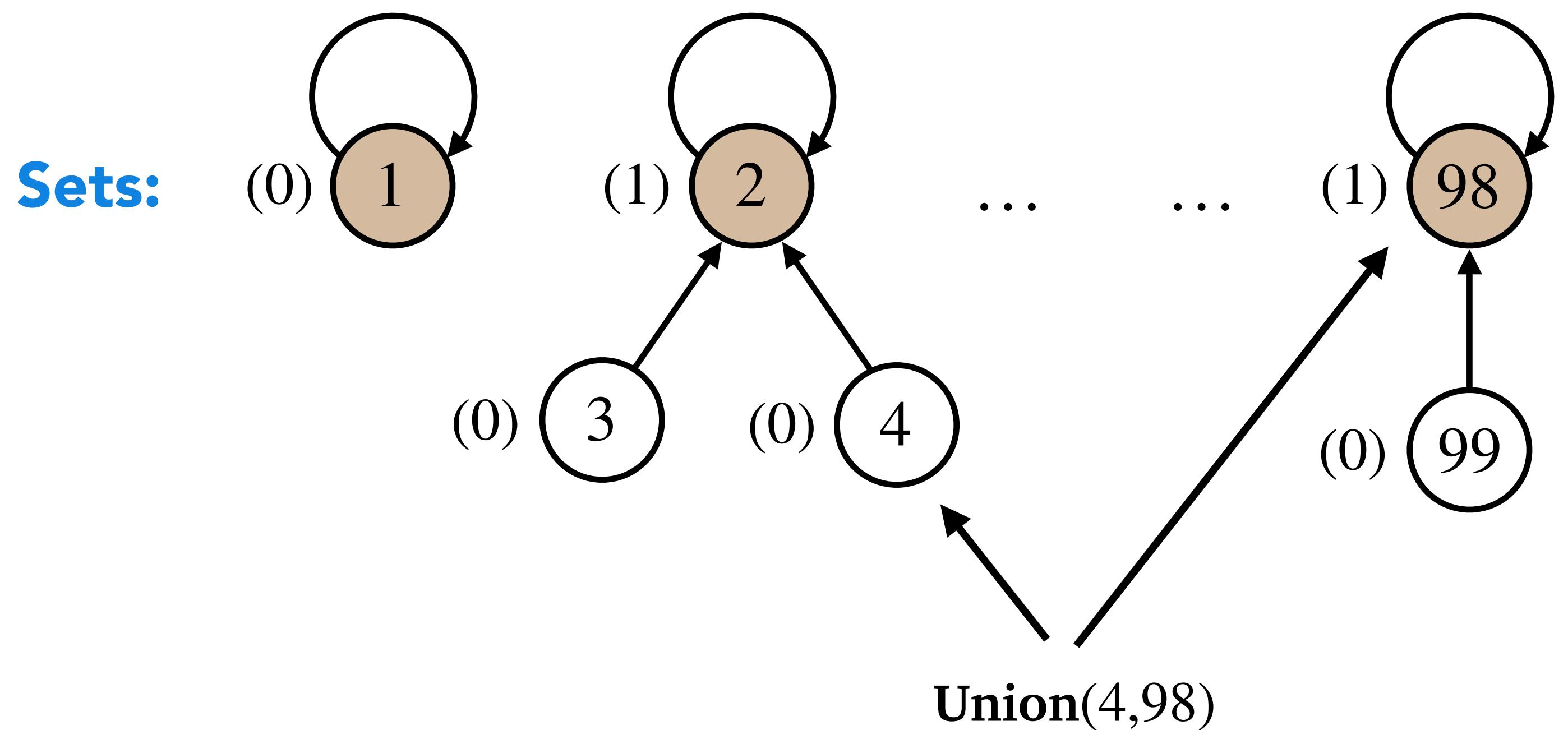
Union on Disjoint-Sets as Trees using Rank



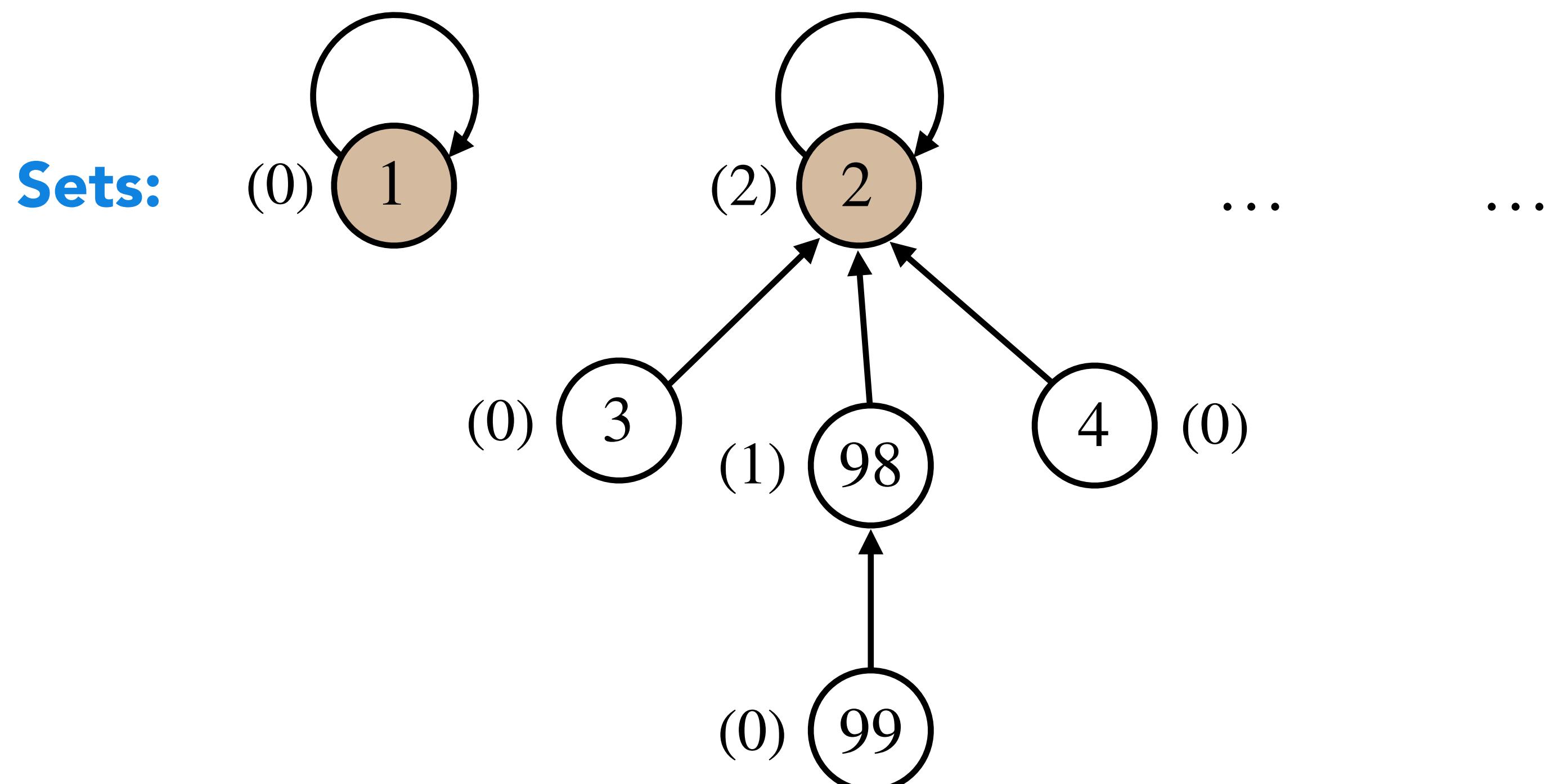
Union on Disjoint-Sets as Trees using Rank



Union on Disjoint-Sets as Trees using Rank



Union on Disjoint-Sets as Trees using Rank



Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set(x)**, **Union(x, y)**, and **Find-Set(x)**.

Make-Set(x):

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Union(x, y):

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$
5. $x.p = y$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$
5. $x.p = y$
6. **else**

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$
5. $x.p = y$
6. **else**
7. $x.p = y$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$
5. $x.p = y$
6. **else**
7. $x.p = y$
8. $y.rank = y.rank + 1$

Disjoint-Sets as Trees: Operations

Recall that we need to perform three operations: **Make-Set**(x), **Union**(x, y), and **Find-Set**(x).

Make-Set(x):

1. $x.p = x$
2. $x.rank = 0$

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Assume x and y are in different sets

Union(x, y):

1. $x = \text{Find-Set}(x)$, $y = \text{Find-Set}(y)$
2. **if** $x.rank > y.rank$
3. $y.p = x$
4. **else if** $x.rank < y.rank$
5. $x.p = y$
6. **else**
7. $x.p = y$
8. $y.rank = y.rank + 1$

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations,

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Disjoint-Sets as Trees: Analysis

Claim: A sequence of m Make-Set, Union, & Find-Set operations, first n of which are Make-Set operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proving rank of any tree (set) can be at most $O(\lg n)$ is sufficient for proving above claim.

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step:

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step:

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with **rank $\leq i$** , we will prove it for

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T ,

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T , it must have been a union of two trees say T_1 and T_2 with their roots' rank i .

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T , it must have been a union of two trees say T_1 and T_2 with their roots' rank i .

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T , it must have been a union of two trees say T_1 and T_2 with their roots' rank i .

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T , it must have been a union of two trees say T_1 and T_2 with their roots' rank i .

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Case 2: At rank $i + 1$ of x , every union operation can add $k \geq 0$ nodes in $\text{tree}(x)$.

Disjoint-Sets as Trees: Analysis

Claim: A node with **rank** (or height) h has at least 2^h nodes in the subtree rooted at that node.

Proof: We will prove it using induction on h .

Basis Step: Nodes in subtree of a node with rank 0 contains 1 node. Trivially true.

Inductive Step: Assuming the claim is true for nodes with $\text{rank} \leq i$, we will prove it for nodes with $\text{rank } i + 1$. Let x be a node with rank $i + 1$.

Case 1: The first time when x 's rank changed from i to $i + 1$ and it became root of tree, say T , it must have been a union of two trees say T_1 and T_2 with their roots' rank i .

From inductive hypothesis each of T_1 and T_2 contain at least 2^i nodes.

Hence, $T = T_1 \cup T_2$ will contain at least $2^i + 2^i = 2^{i+1}$ nodes.

Case 2: At rank $i + 1$ of x , every union operation can add $k \geq 0$ nodes in $\text{tree}(x)$.

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible.

■

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations,

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set**

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof:

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: **Make-Set** operations take constant time.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: **Make-Set** operations take constant time.

Union operations take the same time as **Find-Set**.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: **Make-Set** operations take constant time.

Union operations take the same time as **Find-Set**.

Find-Set operations take $O(h)$ time, where $h \leq \lfloor \lg n \rfloor$ is the rank of the root of the tree.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: **Make-Set** operations take constant time.

Union operations take the same time as **Find-Set**.

Find-Set operations take $O(h)$ time, where $h \leq \lfloor \lg n \rfloor$ is the rank of the root of the tree.

Hence, m operations take $O(m \lg n)$ time.

Disjoint-Sets as Trees: Analysis

Claim: Every node has **rank** at most $\lfloor \lg n \rfloor$ in the disjoint-set via trees using rank heuristic.

Proof: Suppose a node has rank $\lfloor \lg n \rfloor + k$, where $k > 0$.

Then, from the previous claim its subtree should contain at least $2^{\lfloor \lg n \rfloor + k}$ nodes.

But, $2^{\lfloor \lg n \rfloor + k} > n$, which is not possible. ■

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m \lg n)$ time in the tree using rank implementation.

Proof: **Make-Set** operations take constant time.

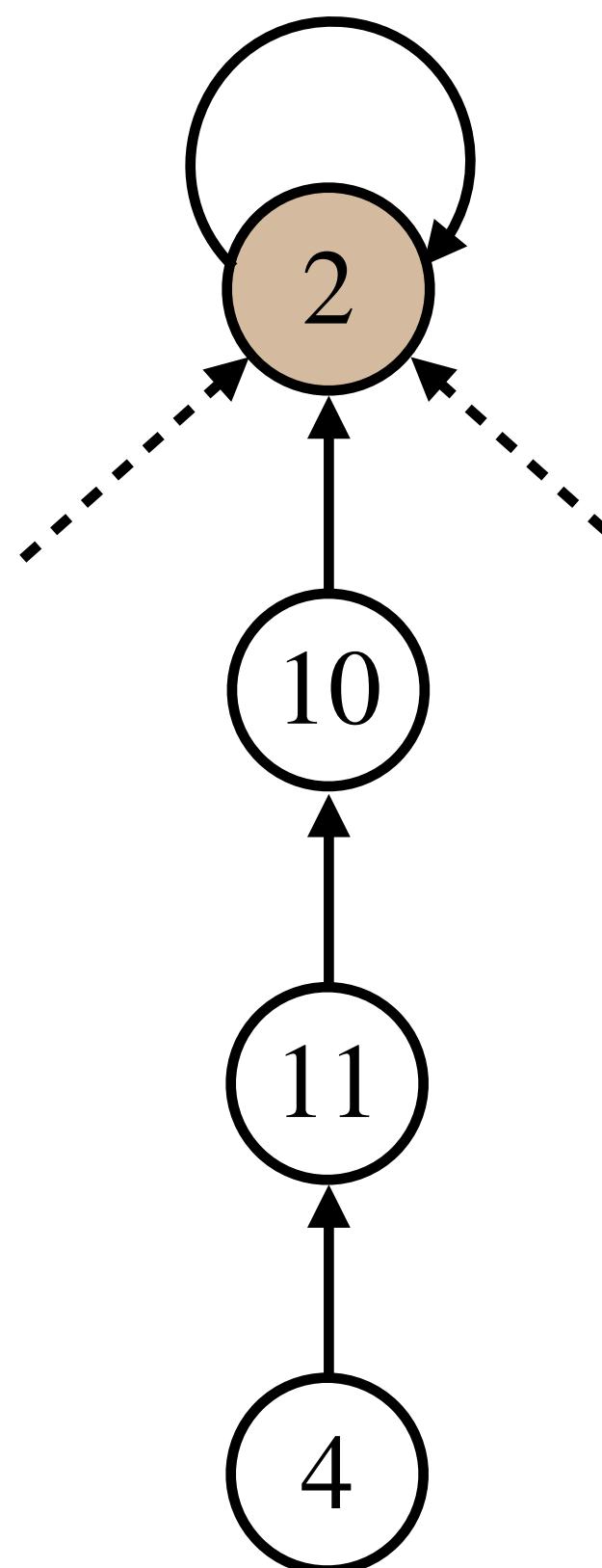
Union operations take the same time as **Find-Set**.

Find-Set operations take $O(h)$ time, where $h \leq \lfloor \lg n \rfloor$ is the rank of the root of the tree.

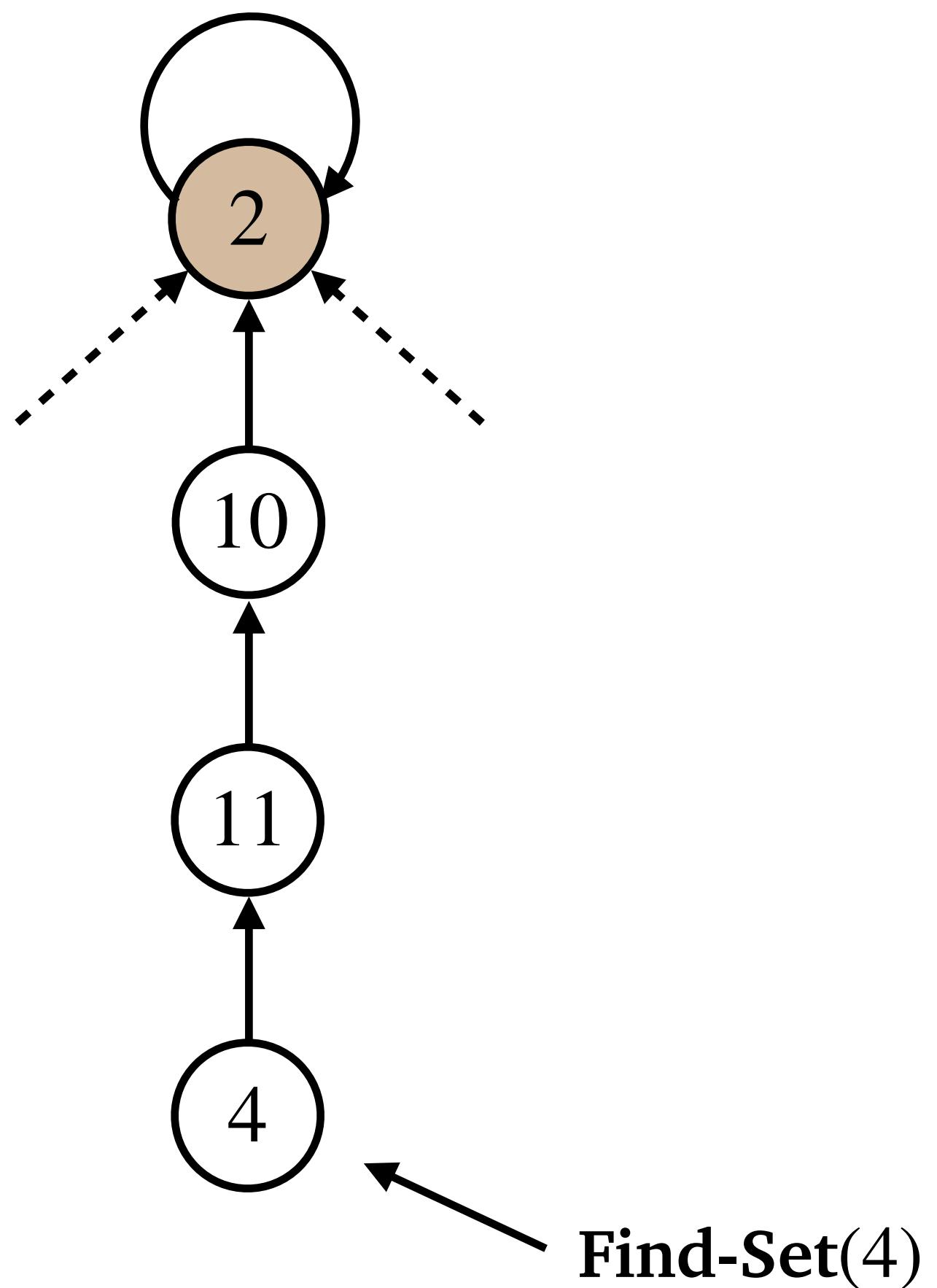
Hence, m operations take $O(m \lg n)$ time. ■

Path-Compression Heuristic

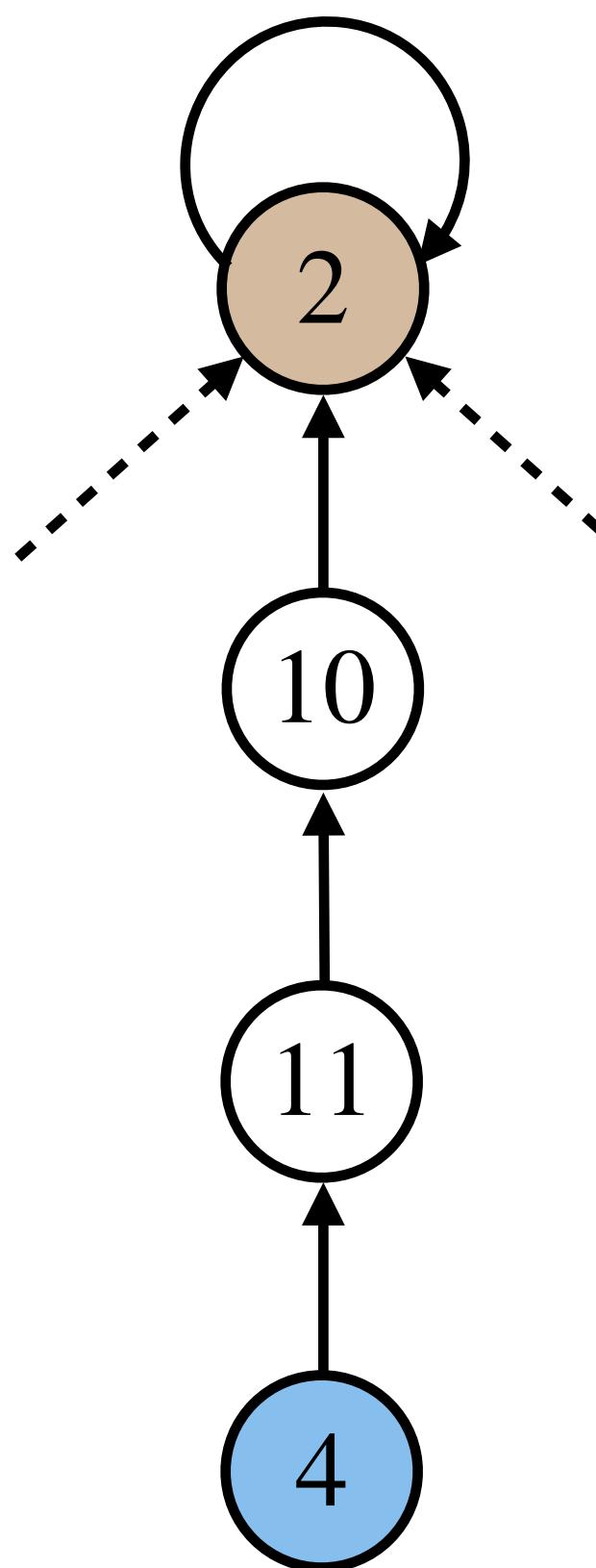
Path-Compression Heuristic



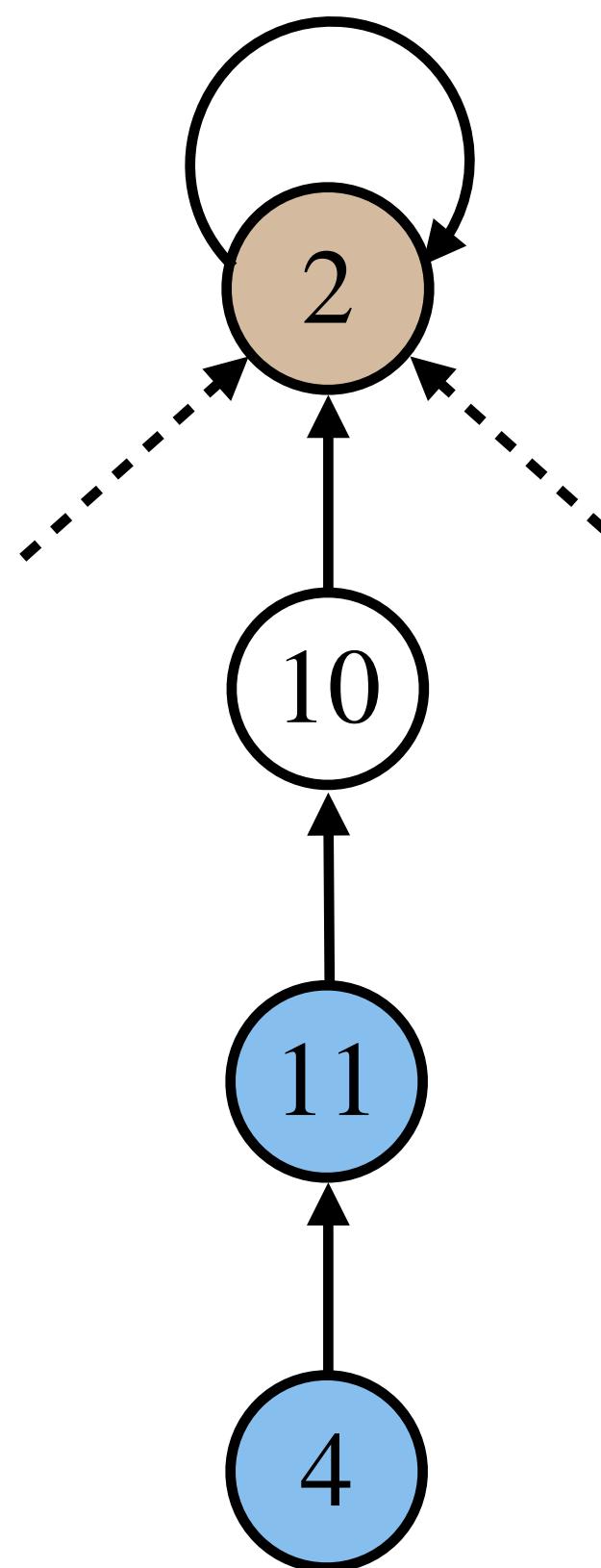
Path-Compression Heuristic



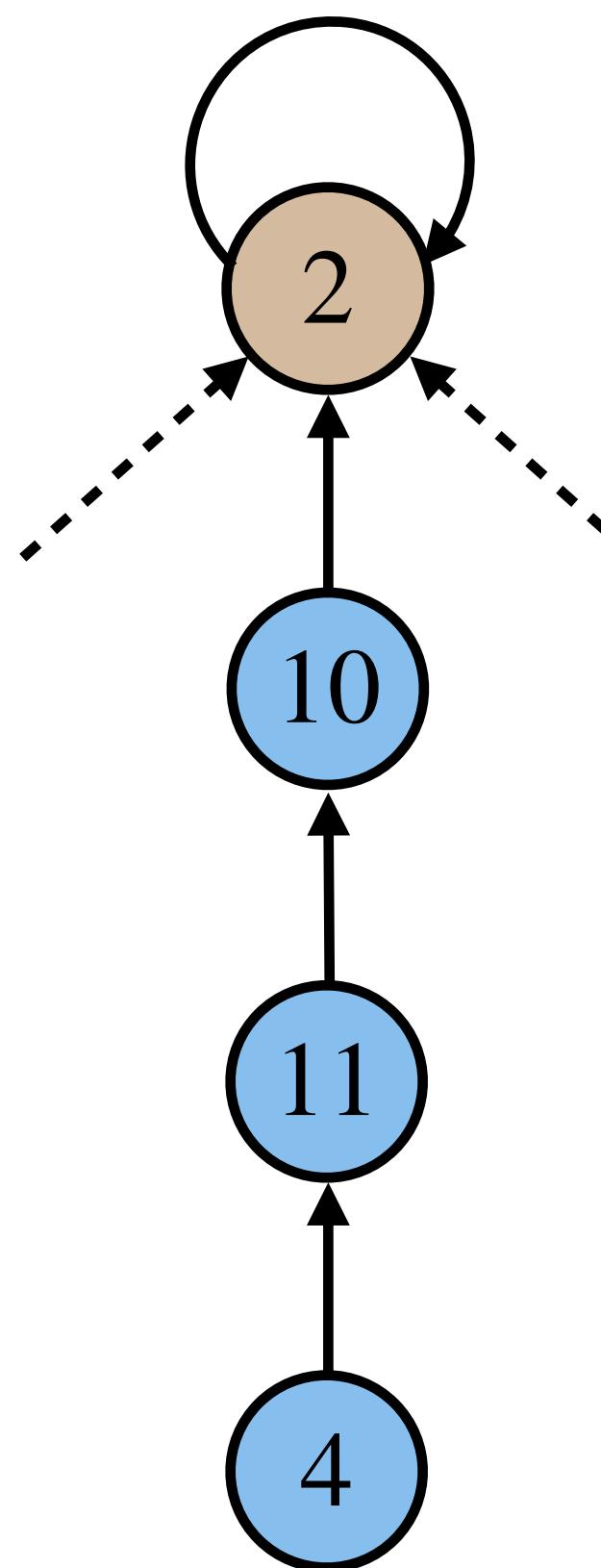
Path-Compression Heuristic



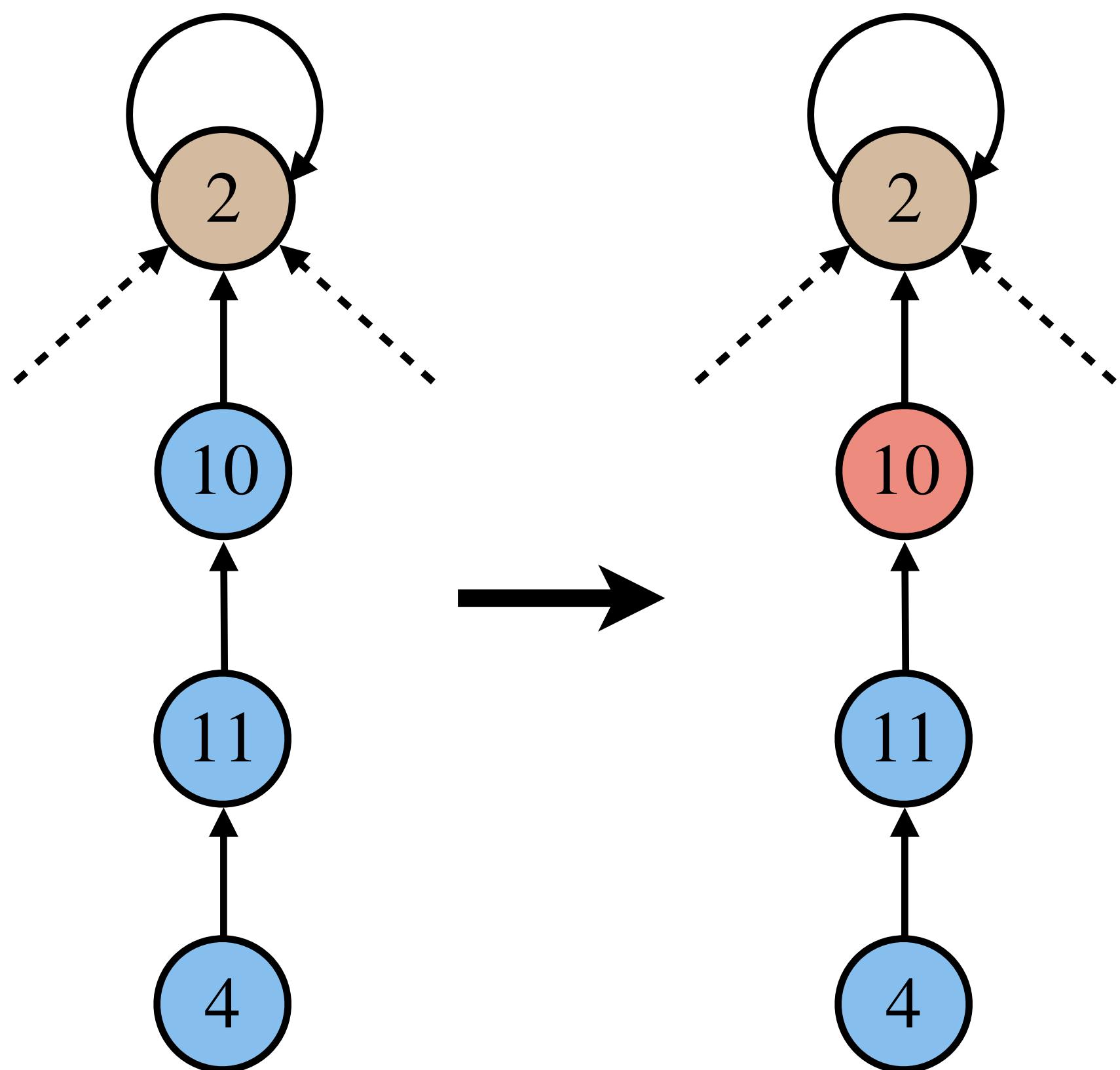
Path-Compression Heuristic



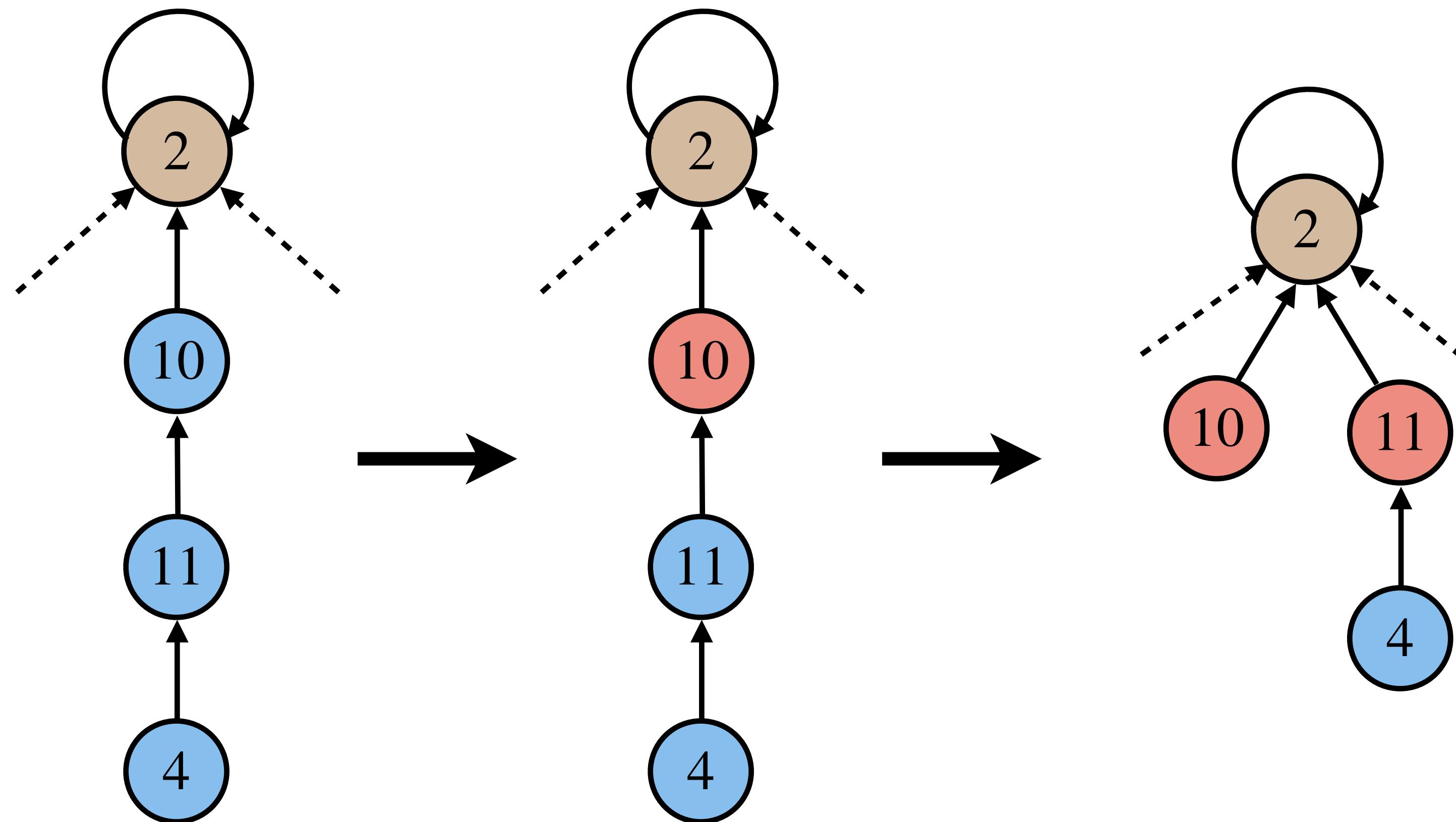
Path-Compression Heuristic



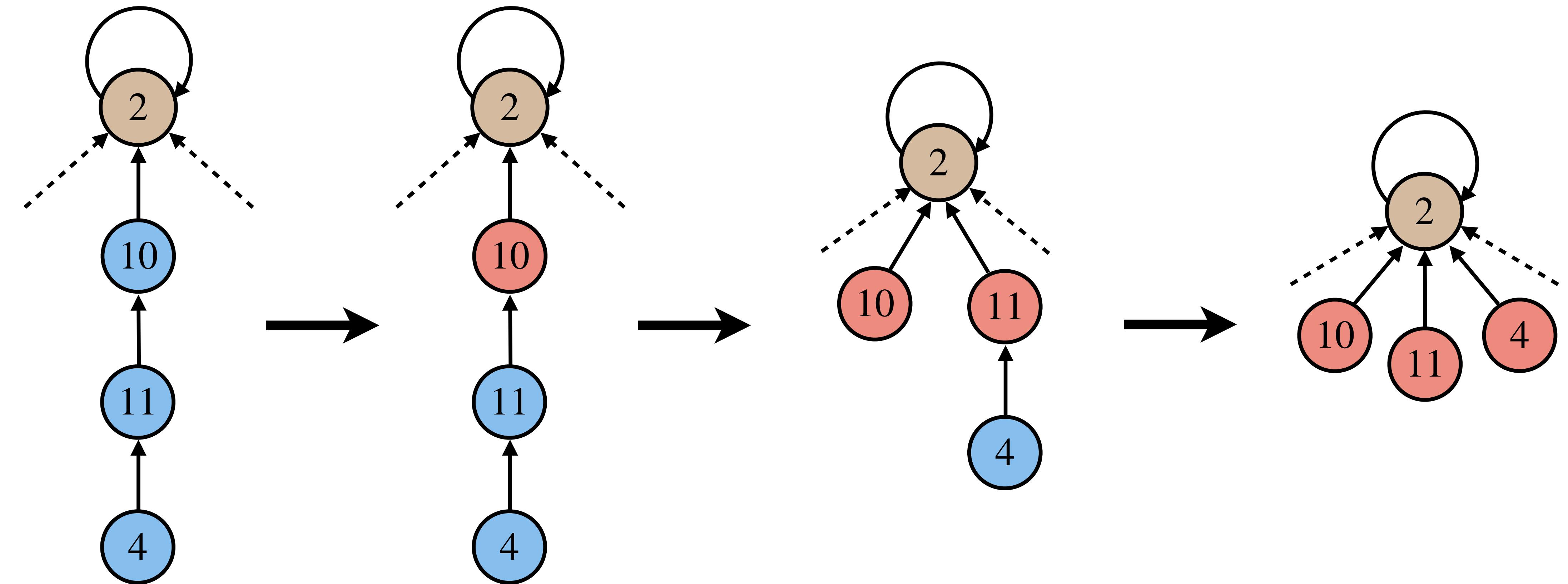
Path-Compression Heuristic



Path-Compression Heuristic

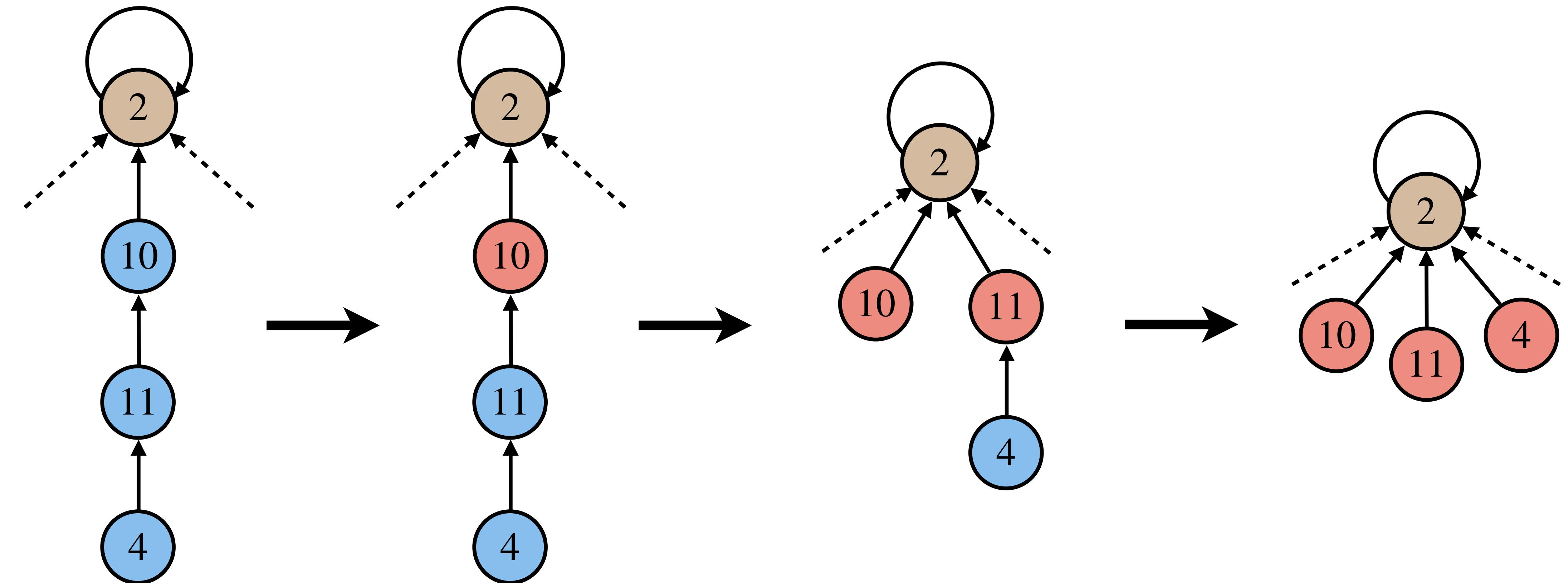


Path-Compression Heuristic



Path-Compression Heuristic

In **Path-Compression**, while performing $\text{Find-Set}(x)$ we make **root** the parent of every node on path from x to **root**.



Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. **if** $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Find-Set(x):

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Find-Set(x):

1. if $x \neq x.p$

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Old **Find-Set**(x)

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Old **Find-Set**(x)

Find-Set(x) with path-compression

Note: When using path-compression heuristic, [rank](#) gives an upper bound on the height of a

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Note: When using path-compression heuristic, [rank](#) gives an upper bound on the height of a node.

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement [path-compression](#).

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations,

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set**

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. **else**
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m\alpha(n))$ time using rank and path-compression heuristic.

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. else
4. **return** x

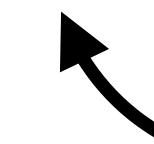
Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m\alpha(n))$ time using rank and path-compression heuristic.



Inverse of Ackerman function, $\alpha(n)$, is a very very slowly growing function.

Disjoint-Sets as Trees: Operations

Change **Find-Set**(x) to implement **path-compression**.

Find-Set(x):

1. if $x \neq x.p$
2. **return** **Find-Set**($x.p$)
3. else
4. **return** x

Old **Find-Set**(x)

Find-Set(x):

1. if $x \neq x.p$
2. $x.p = \text{Find-Set}(x.p)$
3. **return** $x.p$

Find-Set(x) with path-compression

Claim: A sequence of m **Make-Set**, **Union**, & **Find-Set** operations, first n of which are **Make-Set** operations, takes $O(m\alpha(n))$ time using rank and path-compression heuristic.

$$\alpha(n) \leq 4 \text{ for } n \leq 10^{80}.$$