
Lecture 12

Disjoint-Set Data Structure (contd.)

Source: Introduction to Algorithms, CLRS

Union on Disjoint-Sets as Trees using Rank

Union on Disjoint-Sets as Trees using Rank

Idea:

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

• Root with smaller rank will point to root with larger rank.

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

• Root with smaller rank will point to root with larger rank.

• If roots have the same rank then anyone can point to the other one and rank of the new

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

• Root with smaller rank will point to root with larger rank.

• If roots have the same rank then anyone can point to the other one and rank of the new

representative will increase by one.

Union on Disjoint-Sets as Trees using Rank

Idea:

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

• Root with smaller rank will point to root with larger rank.

• If roots have the same rank then anyone can point to the other one and rank of the new

Rank starts with 0

representative will increase by one.

Union on Disjoint-Sets as Trees using Rank

1 2 3 4 98 99 … …Sets:

Union on Disjoint-Sets as Trees using Rank

1 2 3 4 98 99 … …Sets: (0) (0) (0) (0) (0) (0)

Union on Disjoint-Sets as Trees using Rank

1 2 3 4 98 99 … …Sets: (0) (0) (0) (0) (0) (0)

Union(2,3)

Union on Disjoint-Sets as Trees using Rank

1 2

3

4 98 99 … …Sets: (0) (1)

(0)

(0) (0) (0)

Union on Disjoint-Sets as Trees using Rank

1 2

3

4 98 99 … …Sets: (0) (1)

(0)

(0) (0) (0)

Union on Disjoint-Sets as Trees using Rank

1 2

3

4 98 99 … …Sets: (0) (1)

(0)

(0) (0) (0)

Union(3,4)

Union on Disjoint-Sets as Trees using Rank

1 2

3

4 98 99 … …Sets: (0) (1)

(0)

(0) (0) (0)

Union(3,4)

Union(98,99)

Union on Disjoint-Sets as Trees using Rank

1 2

3 4

 … …Sets: (0) (1)

(0) (0)

98

99

(1)

(0)

Union on Disjoint-Sets as Trees using Rank

1 2

3 4

 … …Sets: (0) (1)

(0) (0)

98

99

(1)

(0)

Union(4,98)

Union on Disjoint-Sets as Trees using Rank

1 2

3 4

 … …Sets: (0) (2)

(0) (0)98

99

(1)

(0)

Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank
 5. x . p = y

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank
 5. x . p = y
 6. else

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank
 5. x . p = y
 6. else
 7. x . p = y

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank
 5. x . p = y
 6. else
 7. x . p = y
 8. y . rank = y . rank + 1

Disjoint-Sets as Trees: Operations
Recall that we need to perform three operations: Make-Set , Union , and Find-Set .(x) (x, y) (x)

 Make-Set :(x)
 1. x . p = x
 2. x . rank = 0

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Union : (x, y)
 1. Find-Set , Find-Setx = (x) y = (y)
 2. if x . rank > y . rank
 3. y . p = x
 4. else if x . rank < y . rank
 5. x . p = y
 6. else
 7. x . p = y
 8. y . rank = y . rank + 1

Assume and are in different setsx y

Disjoint-Sets as Trees: Analysis

Claim: A sequence of Make-Set, Union, & Find-Set operations,m

Disjoint-Sets as Trees: Analysis

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn

Disjoint-Sets as Trees: Analysis

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Disjoint-Sets as Trees: Analysis

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Disjoint-Sets as Trees: Analysis

Proving rank of any tree (set) can be at most is sufficient for proving above claim.O(lg n)

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof:

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step:

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step:

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T
it must have been a union of two trees say and with their roots' rank .T1 T2 i

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T
it must have been a union of two trees say and with their roots' rank .T1 T2 i

From inductive hypothesis each of and contain at least nodes.T1 T2 2i

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T
it must have been a union of two trees say and with their roots' rank .T1 T2 i

From inductive hypothesis each of and contain at least nodes.T1 T2 2i

Hence, will contain at least nodes.T = T1 ∪ T2 2i + 2i = 2i+1

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T
it must have been a union of two trees say and with their roots' rank .T1 T2 i

From inductive hypothesis each of and contain at least nodes.T1 T2 2i

Hence, will contain at least nodes.T = T1 ∪ T2 2i + 2i = 2i+1

Case : At rank of , every union operation can add nodes in .2 i + 1 x k ≥ 0 tree(x)

Disjoint-Sets as Trees: Analysis
Claim: A node with rank (or height) has at least nodes in the subtree rooted at that node.h 2h

Proof: We will prove it using induction on .h

Basis Step: Nodes in subtree of a node with rank contains node.0 1 Trivially true.

Inductive Step: Assuming the claim is true for nodes with rank , we will prove it for ≤ i
nodes with rank .i + 1 Let be a node with rank .x i + 1

Case : The first time when ’s rank changed from to and it became root of tree, say ,1 x i i + 1 T
it must have been a union of two trees say and with their roots' rank .T1 T2 i

From inductive hypothesis each of and contain at least nodes.T1 T2 2i

Hence, will contain at least nodes.T = T1 ∪ T2 2i + 2i = 2i+1

Case : At rank of , every union operation can add nodes in .2 i + 1 x k ≥ 0 tree(x)
◼

Disjoint-Sets as Trees: Analysis

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof:

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof:

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof: Make-Set operations take constant time.

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take time, where is the rank of the root of the tree.O(h) h ≤ ⌊lg n⌋

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take time, where is the rank of the root of the tree.O(h) h ≤ ⌊lg n⌋
Hence, operations take time.m O(m lg n)

Disjoint-Sets as Trees: Analysis
Claim: Every node has rank at most in the disjoint-set via trees using rank heuristic.⌊lg n⌋

Proof: Suppose a node has rank , where .⌊lg n⌋ + k k > 0

Then, from the previous claim its subtree should contain at least nodes.2⌊lg n⌋+k

But, , which is not possible.2⌊lg n⌋+k > n ◼

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time in the tree using rank implementation. O(m lg n)

Proof: Make-Set operations take constant time.

Union operations take the same time as Find-Set.

Find-Set operations take time, where is the rank of the root of the tree.O(h) h ≤ ⌊lg n⌋
Hence, operations take time.m O(m lg n)

◼

Path-Compression Heuristic

Path-Compression Heuristic

2

11

10

4

Path-Compression Heuristic

2

11

10

4

Find-Set(4)

Path-Compression Heuristic

2

11

10

4

Path-Compression Heuristic

2

11

10

4

Path-Compression Heuristic

2

11

10

4

Path-Compression Heuristic

2

11

10

4

2

11

10

4

Path-Compression Heuristic

2

11

10

4

2

11

10

4

2

1110

4

Path-Compression Heuristic

2

11

10

4

2

11

10

4

2

1110

4

2

11
10 4

Path-Compression Heuristic

2

11

10

4

In Path-Compression, while performing Find-Set(x) we make root the parent of every node

on path from to root. x

2

11

10

4

2

1110

4

2

11
10 4

Disjoint-Sets as Trees: Operations

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p
 2. Find-Setx . p = (x . p)

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p
 2. Find-Setx . p = (x . p)
 3. return x . p

Old Find-Set(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p
 2. Find-Setx . p = (x . p)
 3. return x . p

Old Find-Set(x) Find-Set with path-compression(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p
 2. Find-Setx . p = (x . p)
 3. return x . p

Old Find-Set(x) Find-Set with path-compression(x)

Note: When using path-compression heuristic, rank gives an upper bound on the height of a

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set : (x)
 1. if x ≠ x . p
 2. return Find-Set(x . p)
 3. else
 4. return x

 Find-Set : (x)
 1. if x ≠ x . p
 2. Find-Setx . p = (x . p)
 3. return x . p

Old Find-Set(x) Find-Set with path-compression(x)

Note: When using path-compression heuristic, rank gives an upper bound on the height of a

node.

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Claim: A sequence of Make-Set, Union, & Find-Set operations,m

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time using rank and path-compression heuristic. O(mα(n))

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time using rank and path-compression heuristic. O(mα(n))

Inverse of Ackerman function, , is a very very slowly growing function.α(n)

Disjoint-Sets as Trees: Operations

Change Find-Set to implement path-compression.(x)

 Find-Set :

 1. if

 2. return Find-Set

 3. else

 4. return

(x)
x ≠ x . p

(x . p)

x

 Find-Set :

 1. if

 2. Find-Set

 3. return

(x)
x ≠ x . p
x . p = (x . p)

x . p

Old Find-Set(x) Find-Set with path-compression(x)

Claim: A sequence of Make-Set, Union, & Find-Set operations,m first of which are Make-Setn
operations, takes time using rank and path-compression heuristic. O(mα(n))

 for .α(n) ≤ 4 n ≤ 1080

