
Lecture 12

Disjoint-Set Data Structure (contd.)

Source: Introduction to Algorithms, CLRS
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Idea: 

• For every node keep track of its rank which denotes its height in the tree.

• During Union:

• Root with smaller rank will point to root with larger rank.

• If roots have the same rank then anyone can point to the other one and rank of the new

Rank starts with 0

representative will increase by one.
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Disjoint-Sets as Trees: Analysis

Proving rank of any tree (set) can be at most  is sufficient for proving above claim.O(lg n)
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◼
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Change Find-Set  to implement path-compression.(x)

 Find-Set :      (x)
 1.    if x ≠ x . p
 2.        return Find-Set(x . p)
 3.    else 
 4.        return x

 Find-Set :      (x)
 1.    if x ≠ x . p
 2.          Find-Setx . p = (x . p)
 3.    return x . p

Old Find-Set(x) Find-Set  with path-compression(x)

Note: When using path-compression heuristic, rank gives an upper bound on the height of a
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Inverse of Ackerman function, , is a very very slowly growing function.α(n)
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 for .α(n) ≤ 4 n ≤ 1080


